Data Cart: A Privacy Pattern for Personal Data Management in Organizations

Author:

Tolsdorf Jan,Iacono Luigi Lo

Abstract

AbstractThe European General Data Protection Regulation requires the implementation of Technical and Organizational Measures (TOMs) to reduce the risk of illegitimate processing of personal data. For these measures to be effective, they must be applied correctly by employees who process personal data under the authority of their organization. However, even data processing employees often have limited knowledge of data protection policies and regulations, which increases the likelihood of misconduct and privacy breaches. To lower the likelihood of unintentional privacy breaches, TOMs must be developed with employees’ needs, capabilities, and usability requirements in mind. To reduce implementation costs and help organizations and IT engineers with the implementation, privacy patterns have proven to be effective for this purpose. In this chapter, we introduce the privacy pattern Data Cart, which specifically helps to develop TOMs for data processing employees. Based on a user-centered design approach with employees from two public organizations in Germany, we present a concept that illustrates how Privacy by Design can be effectively implemented. Organizations, IT engineers, and researchers will gain insight on how to improve the usability of privacy-compliant tools for managing personal data.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3