Author:
Yang Fei,Shao Xiaohu,Zhang Lijun,Deng Pingling,Zhou Xiangdong,Shi Yu
Publisher
Springer International Publishing
Reference27 articles.
1. Kim, J., Zeng, H., Ghadiyaram, D., et al.: Deep convolutional neural models for picture-quality prediction: challenges and solutions to data-driven image quality assessment. IEEE Signal Process. Mag. 34(6), 130–141 (2017)
2. Simone, B., Luigi, C., Paolo, N., Raimondo, S.: On the use of deep learning for blind image quality assessment. Signal Image Video Process. (3), 1–8 (2016)
3. Pittayapat, P., Oliveira, S., Thevissen, P., Michielsen, K., Bergans, N., Willems, G., et al.: Image quality assessment and medical physics evaluation of different portable dental X-ray units. Forensic Sci. Int. 201(1–3), 112–117 (2010)
4. Tanchenko, A.: Visual-PSNR measure of image quality. J. Vis. Commun. Image Represent. 25(5), 874–878 (2014)
5. Wang, Z., Bovik, A.C., Sheikh, H.R., Eero, P.S.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献