Examining the Adoption of Knowledge Graphs in the Manufacturing Industry: A Comprehensive Review

Author:

Martinez-Gil Jorge,Hoch Thomas,Pichler Mario,Heinzl Bernhard,Moser Bernhard,Kurniawan Kabul,Kiesling Elmar,Krause Franz

Abstract

AbstractThe integration of Knowledge Graphs (KGs) in the manufacturing industry can significantly enhance the efficiency and flexibility of production lines and improve product quality. By integrating and contextualizing information about devices, equipment, production resources, location, usage, and related data, KGs can be a powerful operational tool. Moreover, KGs can contribute to the intelligence of manufacturing processes by providing insights into the complex and competitive manufacturing landscape. This research work presents a comprehensive analysis of the current trends utilizing KG in the manufacturing sector. We provide an overview of the state of the art in KG applications in manufacturing and highlight the critical issues that need to be addressed to enable a successful implementation. Our research aims to contribute to advancing KG technology in manufacturing and realizing its full potential to enhance manufacturing operations and competitiveness.

Publisher

Springer Nature Switzerland

Reference46 articles.

1. Aggour, K.S., Kumar, V.S., Cuddihy, P., Williams, J.W., Gupta, V., Dial, L., Hanlon, T., Gambone, J., Vinciquerra, J.: Federated multimodal big data storage & analytics platform for additive manufacturing. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 1729–1738. IEEE, New York (2019)

2. Alam, M., Fensel, A., Martinez-Gil, J., Moser, B., Recupero, D.R., Sack, H.: Special issue on machine learning and knowledge graphs. Future Gener. Comput. Syst. 129, 50–53 (2022). https://doi.org/10.1016/j.future.2021.11.022

3. Bachhofner, S., Kiesling, E., Kurniawan, K., Sallinger, E., Waibel, P.: Knowledge graph modularization for cyber-physical production systems. In: Seneviratne, O., Pesquita, C., Sequeda, J., Etcheverry, L. (eds.) Proceedings of the ISWC 2021 Posters, Demos and Industry Tracks: From Novel Ideas to Industrial Practice co-located with 20th International Semantic Web Conference (ISWC 2021), Virtual Conference, October 24–28, 2021. CEUR Workshop Proceedings, vol. 2980. CEUR-WS.org (2021). https://ceur-ws.org/Vol-2980/paper333.pdf

4. Bachhofner, S., Kiesling, E., Revoredo, K., Waibel, P., Polleres, A.: Automated process knowledge graph construction from BPMN models. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) Database and Expert Systems Applications—33rd International Conference, DEXA 2022, Vienna, Austria, August 22–24, 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13426, pp. 32–47. Springer, Berlin (2022). https://doi.org/10.1007/978-3-031-12423-5_3

5. Bachhofner, S., Kurniawan, K., Kiesling, E., Revoredo, K., Bayomie, D.: Knowledge graph supported machine parameterization for the injection moulding industry. In: Villazón-Terrazas, B., Ortiz-Rodríguez, F., Tiwari, S., Sicilia, M., Martín-Moncunill, D. (eds.) Knowledge Graphs and Semantic Web—4th Iberoamerican Conference and Third Indo-American Conference, KGSWC 2022, Madrid, Spain, November 21–23, 2022, Proceedings. Communications in Computer and Information Science, vol. 1686, pp. 106–120. Springer, Berlin (2022). https://doi.org/10.1007/978-3-031-21422-6_8

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3