Leveraging Semantic Representations via Knowledge Graph Embeddings

Author:

Krause Franz,Kurniawan Kabul,Kiesling Elmar,Martinez-Gil Jorge,Hoch Thomas,Pichler Mario,Heinzl Bernhard,Moser Bernhard

Abstract

AbstractThe representation and exploitation of semantics has been gaining popularity in recent research, as exemplified by the uptake of large language models in the field of Natural Language Processing (NLP) and knowledge graphs (KGs) in the Semantic Web. Although KGs are already employed in manufacturing to integrate and standardize domain knowledge, the generation and application of corresponding KG embeddings as lean feature representations of graph elements have yet to be extensively explored in this domain. Existing KGs in manufacturing often focus on top-level domain knowledge and thus ignore domain dynamics, or they lack interconnectedness, i.e., nodes primarily represent non-contextual data values with single adjacent edges, such as sensor measurements. Consequently, context-dependent KG embedding algorithms are either restricted to non-dynamic use cases or cannot be applied at all due to the given KG characteristics. Therefore, this work provides an overview of state-of-the-art KG embedding methods and their functionalities, identifying the lack of dynamic embedding formalisms and application scenarios as the key obstacles that hinder their implementation in manufacturing. Accordingly, we introduce an approach for dynamizing existing KG embeddings based on local embedding reconstructions. Furthermore, we address the utilization of KG embeddings in the Horizon2020 project Teaming.AI (www.teamingai-project.eu.) focusing on their respective benefits.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3