Building Performance Simulation

Author:

Dimara Asimina,Krinidis Stelios,Ioannidis Dimosthenis,Tzovaras Dimitrios

Abstract

AbstractSimulation is a proven technique that uses computational, mathematical, and machine learning models to represent the physical characteristics, expected or actual operation, and control strategies of a building and its energy systems. Simulations can be used in a number of tasks along the deep renovation life cycle, including: (a) integrating simulations with other knowledge-based systems to support decision-making, (b) using simulations to evaluate and compare design scenarios, (c) integrating simulations with real-time monitoring and diagnostic systems for building energy management and control, (d) integrating multiple simulation applications, and (e) using virtual reality (VR) to enable digital building design and operation experiences. While building performance simulation is relatively well established, there are numerous challenges to applying it across the renovation life cycle, including data integration from fragmented building systems, and modelling human-building interactions, amongst others. This chapter defines the building performance simulation domain outlining significant use cases, widely used simulation tools, and the challenges for implementation.

Publisher

Springer International Publishing

Reference39 articles.

1. acousticcalc. (2022). http://www.acousticcalc.com/

2. Alor-Hernández, G., & Valencia-García, R. (Eds.). (2017). Current trends on knowledge-based systems. Springer International Publishing.

3. Attia, S. (2010). “Building performance simulation tools: selection criteria and user survey.”.

4. Attia, S., Hamdy, M., O’Brien, W., & Carlucci, S. (2013). Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy and Buildings, 60, 110–124.

5. Bermeo-Ayerbe, M. A., Ocampo-Martinez, C., & Diaz-Rozo, J. (2022). Data-driven energy prediction modeling for both energy efficiency and maintenance in smart manufacturing systems. Energy, 238, 121691.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3