Author:
Dimara Asimina,Krinidis Stelios,Ioannidis Dimosthenis,Tzovaras Dimitrios
Abstract
AbstractSimulation is a proven technique that uses computational, mathematical, and machine learning models to represent the physical characteristics, expected or actual operation, and control strategies of a building and its energy systems. Simulations can be used in a number of tasks along the deep renovation life cycle, including: (a) integrating simulations with other knowledge-based systems to support decision-making, (b) using simulations to evaluate and compare design scenarios, (c) integrating simulations with real-time monitoring and diagnostic systems for building energy management and control, (d) integrating multiple simulation applications, and (e) using virtual reality (VR) to enable digital building design and operation experiences. While building performance simulation is relatively well established, there are numerous challenges to applying it across the renovation life cycle, including data integration from fragmented building systems, and modelling human-building interactions, amongst others. This chapter defines the building performance simulation domain outlining significant use cases, widely used simulation tools, and the challenges for implementation.
Publisher
Springer International Publishing
Reference39 articles.
1. acousticcalc. (2022). http://www.acousticcalc.com/
2. Alor-Hernández, G., & Valencia-García, R. (Eds.). (2017). Current trends on knowledge-based systems. Springer International Publishing.
3. Attia, S. (2010). “Building performance simulation tools: selection criteria and user survey.”.
4. Attia, S., Hamdy, M., O’Brien, W., & Carlucci, S. (2013). Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy and Buildings, 60, 110–124.
5. Bermeo-Ayerbe, M. A., Ocampo-Martinez, C., & Diaz-Rozo, J. (2022). Data-driven energy prediction modeling for both energy efficiency and maintenance in smart manufacturing systems. Energy, 238, 121691.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献