Author:
Kong Chao,Chen Baoxiang,Li Shaoying,Chen Jiahui,Chen Yifan,Zhang Liping
Publisher
Springer International Publishing
Reference22 articles.
1. Adikari, S., Dutta, K.: A new approach to real-time bidding in online advertisements: auto pricing strategy. INFORMS J. Comput. 31(1), 66–82 (2019).
https://doi.org/10.1287/ijoc.2018.0812
2. Azoulay, R., Katz, R., Kraus, S.: Efficient bidding strategies for cliff-edge problems. Auton. Agents Multi Agent Syst. 28(2), 290–336 (2014).
https://doi.org/10.1007/s10458-013-9227-z
3. Badidi, E., Atif, Y., Sheng, Q.Z., Maheswaran, M.: On personalized cloud service provisioning for mobile users using adaptive and context-aware service composition. Computing 101(4), 291–318 (2018).
https://doi.org/10.1007/s00607-018-0631-8
4. Cai, H., Ren, K., Zhang, W., et al.: Real-time bidding by reinforcement learning in display advertising. In: WSDM 2017, Cambridge, United Kingdom, 6–10 February 2017, pp. 661–670 (2017).
https://doi.org/10.1145/3018661.3018702
5. Chou, P., Maturana, D., Scherer, S.A.: Improving stochastic policy gradients in continuous control with deep reinforcement learning using the beta distribution. In: ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, pp. 834–843 (2017).
http://proceedings.mlr.press/v70/chou17a.html