Publisher
Springer International Publishing
Reference26 articles.
1. R.P. Agarwal, S.S. Dragomir, An application of Hayashi’s inequality for differentiable functions. Comput. Math. Appl. 32(6), 95–99 (1996)
2. P.L. Butzer, R.J. Nessel, Fourier Analysis and Approximation Theory, vol. 1 (Birkhaüser, Basel, 1977)
3. S.S. Dragomir, On the Ostrowski integral inequality for mappings of bounded variation and applications. Math. Inequal. Appl. 3(1), 59–66 (2001)
4. S.S. Dragomir, Approximating the finite Hilbert transform via an Ostrowski type inequality for functions of bounded variation. J. Inequal. Pure Appl. Math. 3(4), Article 51, 19 pp. (2002)
5. S.S. Dragomir, Approximating the finite Hilbert transform via Ostrowski type inequalities for absolutely continuous functions. Bull. Korean Math. Soc. 39(4), 543–559 (2002)