Author:
Deuse Jochen,Wiegand Mario,Weisner Kirsten
Publisher
Springer International Publishing
Reference36 articles.
1. Abbasi, S., Nejatian, S., Parvin, H., Rezaie, V., & Bagherifard, K. (2018). Clustering ensemble selection considering quality and diversity. Artificial Intelligence Review, 1–30.
2. Aggarwal, C. C. (2012). Outlier ensembles. SIGKDD Explorations, 14(2), 49–58.
3. Austina, P. C., Tua, J. V., Hoe, J. E., Levye, D., & Lee, D. S. (2013). Using methods from the data-mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes. Journal of Clinical Epidemiology, 66(4), 398–407.
4. Banfield, R. E., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2005). Ensemble diversity measures and their application to thinning. Information Fusion, 6, 49–62.
5. Breiman, L. (1994). Bagging predictors. Technical report no. 421. Department of Statistics, University of California.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Neural network modeling of the technological process;VII INTERNATIONAL CONFERENCE “SAFETY PROBLEMS OF CIVIL ENGINEERING CRITICAL INFRASTRUCTURES” (SPCECI2021);2023
2. PREDICTION OF HIGH CYCLE TIMES IN WHEEL RIM MOLDING WITH ARTIFICIAL NEURAL NETWORKS;Verimlilik Dergisi;2021-11-11