An Improved Parallel Network Traffic Anomaly Detection Method Based on Bagging and GRU
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-59016-1_35
Reference23 articles.
1. He, Z., Cai, Z., Yu, J.: Latent-data privacy preserving with customized data utility for social network data. IEEE Trans. Vehic. Technol. 67(1), 665–673 (2018)
2. Yu, L., Shen, H.Y., Karan, S., Ye, L., Cai, Z.P.: CoRE: cooperative end-to-end traffic redundancy elimination for reducing cloud bandwidth cost. IEEE Trans. Parallel Distrib. Syst. 28(2), 446–461 (2017). https://doi.org/10.1109/TPDS.2016.2578928
3. Lakhina, A., Papagiannaki, K., Crovella, M., et al.: Structural analysis of network traffic flows. ACM SIGMETRICS 32(1), 61–72 (2004)
4. Holme, P.: Efficient local strategies for vaccination and network attack. EPL 68(6), 908–914 (2004)
5. Mahoney, M.V.: Network traffic anomaly detection based on packet bytes. In: ACM Symposium on Applied Computing, SAC 2003, Melbourne, pp. 346–350. ACM (2003). https://doi.org/10.1145/952532.952601
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multilayer Seasonal Autoregressive Integrated Moving Average Models for Complex Network Traffic Analysis;Journal of Machine and Computing;2024-01-05
2. An effective network traffic anomaly detection method based on deep learning for low-orbit satellite;International Conference on Intelligent Systems, Communications, and Computer Networks (ISCCN 2023);2023-06-16
3. Retracted: Anomaly detection with ensemble empirical mode decomposition and approximate entropy for quick user datagram protocol internet connection‐based distributed Blockchain systems;IET Software;2023-01-20
4. Anomaly Detection with Ensemble Empirical Mode Decomposition for Secure QUIC Communications: A Simple Use Case;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023
5. Labeling Expert: A New Multi-Network Anomaly Detection Architecture Based on LNN-RLSTM;Applied Sciences;2022-12-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3