1. Amarbayasgalan, T., Jargalsaikhan, B., Ryu, K.H.: Unsupervised novelty detection using deep autoencoders with density based clustering. Appl. Sci. (Switz.) 8(9) (2018). https://doi.org/10.3390/app8091468
2. Bjerge, K., et al.: Hierarchical classification of insects with multitask learning and anomaly detection. Eco. Inform. 77, 102278 (2023). https://doi.org/10.1016/j.ecoinf.2023.102278
3. Bodesheim, P., Freytag, A., Rodner, E., Kemmler, M., Denzler, J.: Kernel null space methods for novelty detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2013). https://doi.org/10.1109/CVPR.2013.433
4. Böhlke, J., Korsch, D., Bodesheim, P., Denzler, J.: Exploiting web images for moth species classification. In: Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI), vol. P-314 (2021)
5. Boudiaf, M., Masud, Z.I., Rony, J., Dolz, J., Piantanida, P., Ayed, I.B.: Transductive information maximization for few-shot learning. In: Advances in Neural Information Processing Systems, vol. 2020-December (2020)