Publisher
Springer Nature Switzerland
Reference25 articles.
1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021). https://doi.org/10.1016/j.inffus.2021.05.008
2. Beauchamp, M.: On numerical computation for the distribution of the convolution of N independent rectified Gaussian variables. J. Soc. Fr. Stat. 159(1), 88–111 (2018)
3. Chan, A.B., Liang, Z.S.J., Vasconcelos, N.: Privacy preserving crowd monitoring: counting people without people models or tracking. In: CVPR, pp. 1–7 (2008). https://doi.org/10.1109/CVPR.2008.4587569
4. Chen, K., Loy, C.C., Gong, S., Xiang, T.: Feature mining for localised crowd counting. In: BMVC, pp. 1–11 (2012). https://doi.org/10.5244/C.26.21
5. Chen, Y., Yang, J., Chen, B., Du, S.: Counting varying density crowds through density guided adaptive selection CNN and transformer estimation. IEEE Trans. Circuits Syst. Video Technol. 33(3), 1055–1068 (2023). https://doi.org/10.1109/TCSVT.2022.3208714