Automated Left Ventricle Dimension Measurement in 2D Cardiac Ultrasound via an Anatomically Meaningful CNN Approach
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-32875-7_4
Reference12 articles.
1. Baracho, S., Pinheiro, D., De Melo, V., Coelho, R.: A hybrid neural system for the automatic segmentation of the interventricular septum in echocardiographic images. In: Proceedings of International Joint Conference on Neural Networks, October, pp. 5072–5078 (2016)
2. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR, pp. 770–778 (2016)
3. Kou, S., et al.: Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur. Heart J. Cardiovasc. Imaging 15(6), 680–690 (2014)
4. Lang, R.M., Badano, L.P., et al.: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur. Heart J. Cardiovasc. Imaging 16(3), 233–271 (2015)
5. Liu, R., Lehman, J., et al.: An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution (2018)
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Bayesian network for simultaneous keyframe and landmark detection in ultrasonic cine;Medical Image Analysis;2024-10
2. Assessment of left ventricular wall thickness and dimension: accuracy of a deep learning model with prediction uncertainty;The International Journal of Cardiovascular Imaging;2024-08-10
3. EchoGLAD: Hierarchical Graph Neural Networks for Left Ventricle Landmark Detection on Echocardiograms;Lecture Notes in Computer Science;2023
4. Segmentation of parasternal long axis views using deep learning;2022 IEEE International Ultrasonics Symposium (IUS);2022-10-10
5. An efficient deep landmark detection network for PLAX EF estimation using sparse annotations;Medical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and Modeling;2022-04-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3