1. J. Pearl. Causality. Cambridge University Press, 2000.
2. J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference – Foundations and Learning Algorithms. MIT Press, 2017.
3. P. Hoyer, D. Janzing, J. Mooij, J. Peters, and B Schölkopf. Nonlinear causal discovery with additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Proceedings of the conference Neural Information Processing Systems (NIPS) 2008, Vancouver, Canada, 2009. MIT Press.
4. J. Peters, D. Janzing, and B. Schölkopf. Identifying cause and effect on discrete data using additive noise models. In Proceedings of The Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS), JMLR: W&CP 9, Chia Laguna, Sardinia, Italy, 2010.
5. K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages 647–655, Arlington, Virginia, United States, 2009. AUAI Press.