Publisher
Springer Nature Switzerland
Reference19 articles.
1. Li, W., Jia, F., Hu, Q.: Automatic segmentation of liver tumor in CT images with deep convolutional neural networks. J. Comput. Commun. (2015). https://www.scirp.org/journal/paperinformation.aspx?paperid=61314 . Accessed 17 Mar 2022
2. Ayalew, Y.A., Fante, K.A., Mohammed, M.: Modified U-Net for liver cancer segmentation from computed tomography images with a new class balancing method. BMC Biomed. Eng. 3, 4 (2021). https://doi.org/10.1186/s42490-021-00050-y
3. Pravitasari, A., et al.: UNet-VGG16 with transfer learning for MRI-based brain tumor segmentation. TELKOMNIKA Telecommun. Comput. Electron. Control 18, 1310 (2020). https://doi.org/10.12928/telkomnika.v18i3.14753
4. Jalal Deen, K., et al.: Fuzzy-C-means clustering based segmentation and CNN-classification for accurate segmentation of lung nodules. Asian Pac. J. Cancer Prev. APJCP 18(7), 1869–1874 (2017). https://doi.org/10.22034/APJCP.2017.18.7.1869
5. Liu, C., Pang, M.: Extracting lungs from CT images via deep convolutional neural network based segmentation and two-pass contour refinement. J. Digit. Imaging 33(6), 1465–1478 (2020). https://doi.org/10.1007/s10278-020-00388-0