Towards Reinforcement Learning-based Aggregate Computing
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-08143-9_5
Reference46 articles.
1. Aguzzi, G.: Research directions for aggregate computing with machine learning. In: IEEE International Conference on Autonomic Computing and Self-Organizing Systems, ACSOS 2021, Companion Volume, pp. 310–312. IEEE (2021). https://doi.org/10.1109/ACSOS-C52956.2021.00078
2. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017). https://doi.org/10.1109/MSP.2017.2743240
3. Audrito, G., Casadei, R., Damiani, F., Pianini, D., Viroli, M.: Optimal resilient distributed data collection in mobile edge environments. Comput. Electr. Eng. 96(Part), 107580 (2021). https://doi.org/10.1016/j.compeleceng.2021.107580
4. Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Compositional blocks for optimal self-healing gradients. In: 11th IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2017, pp. 91–100. IEEE Computer Society (2017). https://doi.org/10.1109/SASO.2017.18
5. Barbalios, N., Tzionas, P.: A robust approach for multi-agent natural resource allocation based on stochastic optimization algorithms. Appl. Soft Comput. 18, 12–24 (2014). https://doi.org/10.1016/j.asoc.2014.01.004
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. MacroSwarm: A scala framework for swarm programming;Science of Computer Programming;2025-01
2. ScaRLib: Towards a hybrid toolchain for aggregate computing and many-agent reinforcement learning;Science of Computer Programming;2024-12
3. Editorial: Understanding and engineering cyber-physical collectives;Frontiers in Robotics and AI;2024-05-06
4. Engineering Distributed Collective Intelligence in Cyber-Physical Swarms;2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT);2024-04-29
5. Actor-Based Designs for Distributed Self-organisation Programming;Lecture Notes in Computer Science;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3