1. Alekhnovich, M.: Mutilated chessboard problem is exponentially hard for resolution. Theoret. Comput. Sci. 310(1–3), 513–525 (2004)
2. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T., Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT Competition 2020 - Solver and Benchmark Descriptions. Department of Computer Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)
3. Brakensiek, J., Heule, M., Mackey, J., Narváez, D.: The resolution of keller’s conjecture. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated Reasoning, pp. 48–65. Springer International Publishing, Cham (2020)
4. Buss, S., Thapen, N.: DRAT and propagation redundancy proofs without new variables. Log. Methods Comput. Sci. 17(2) (2021), https://lmcs.episciences.org/7400
5. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing. pp. 151–158. STOC ’71, ACM, New York, NY, USA (1971)