1. Abdelshiheed, M., Hostetter, J.W., Barnes, T., Chi, M.: Bridging declarative, procedural, and conditional metacognitive knowledge gap using deep reinforcement learning. In: CogSci (2023)
2. Abdelshiheed, M., Hostetter, J.W., Barnes, T., Chi, M.: Leveraging deep reinforcement learning for metacognitive interventions across intelligent tutoring systems. In: AIED (2023). https://www.aied2023.org/accepted_papers.html, https://arxiv.org/pdf/2304.09821.pdf
3. Aleven, V., McLaren, B., Roll, I., Koedinger, K.: Toward meta-cognitive tutoring: a model of help seeking with a cognitive tutor. Int. J. Artif. Intell. Educ. 16(2), 101–128 (2006)
4. Ding, M., Yang, K., Yeung, D.Y., Pong, T.C.: Effective feature learning with unsupervised learning for improving the predictive models in massive open online courses. In: Proceedings of the 9th International Conference on Learning Analytics & Knowledge, pp. 135–144 (2019)
5. Maniktala, M., Cody, C., Isvik, A., Lytle, N., Chi, M., Barnes, T.: Extending the hint factory for the assistance dilemma: a novel, data-driven helpneed predictor for proactive problem-solving help. arXiv preprint arXiv:2010.04124 (2020)