Publisher
Springer International Publishing
Reference19 articles.
1. Karniadakis, G.E., et al.: Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021). https://doi.org/10.1038/s42254-021-00314-5
2. Lutter, M. et al.: Deep lagrangian networks: Using physics as model prior for deep learning. In: International conference on learning representations (2019)
3. Greydanus, S. et al.: Hamiltonian neural networks. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2019)
4. Han, C.-D., et al.: Adaptable hamiltonian neural networks. Phys. Rev. Res. 3, 2 (2021). https://doi.org/10.1103/physrevresearch.3.023156
5. Lusch, B., et al.: Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-018-07210-0
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Polynomial Neural Layers for Numerical Modeling of Dynamical Processes;Computational Science and Its Applications – ICCSA 2023 Workshops;2023