Publisher
Springer International Publishing
Reference16 articles.
1. Chemudugunta, C., Smyth, P., Steyvers, M.: Modeling general and specific aspects of documents with a probabilistic topic model. In: Advances in Neural Information Processing Systems, vol. 19, pp. 241–248 (2007). MIT Press
2. Vuli´c, I.: Cross-language information retrieval models based on latent topic models trained with document-aligned comparable corpora. In: Vuli´c, I., Smet, W.D., Moens, M.-F. (Eds.) Information Retrieval, vol. 16, no. 3, pp. 331—368 (2012)
3. Peters, M., Neumann, M., Iyyer, M. et al.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2227–2237. Association for Computational Linguistics (2018)
4. Ianina, A., Vorontsov, K.: Regularized multimodal hierarchical topic model for document-bydocument exploratory search. In: Conference: 2019 25th Conference of Open Innovations Association, pp. P. 131–138 (2019). https://doi.org/10.23919/FRUCT48121.2019.8981493
5. Feng, Y.: Topic models for image annotation and text illustration. In: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: — Association for Computational Linguistics, pp. 831–839. (2010)