Recurrence Relations for a Family of Orthogonal Polynomials on a Triangle

Author:

Olver Sheehan,Townsend Alex,Vasil Geoffrey M.

Abstract

AbstractThis paper derives sparse recurrence relations between orthogonal polynomials on a triangle and their partial derivatives, which are analogous to recurrence relations for Jacobi polynomials. We derive these recurrences in a systematic fashion by introducing ladder operators that map an orthogonal polynomial to another by incrementing or decrementing its associated parameters by one. We apply the results to efficiently calculating the Laplacian of polynomial approximations of functions on the triangle, using polynomial degrees in the thousands, i.e., millions of degrees of freedom.

Publisher

Springer International Publishing

Reference16 articles.

1. Derezinski, J., Majewski, P.: From conformal group to symmetries of hypergeometric type equations. Symmetry Integrability Geometry: Methods Appl. 12, 108 (2016)

2. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables, 2nd edn. Cambridge University Press, Cambridge (2014)

3. Erdélyi, A.: Higher Transcendental Functions, vol. 1. McGraw–Hill, New York (1953)

4. Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2013)

5. Koornwinder, T.: Two-variable analogues of the classical orthogonal polynomials. In: Theory and Application of Special Functions (Proceedings of an Advanced Seminar Sponsored by the Mathematics Research Center, the University of Wisconsin, Madison, 1975), pp. 435–495

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orthogonal polynomials on domains of revolution;Studies in Applied Mathematics;2024-05-13

2. Computation of Power Law Equilibrium Measures on Balls of Arbitrary Dimension;Constructive Approximation;2022-12-15

3. Fourier Transform of Orthogonal Polynomials over the Triangle with Four Parameters;Turkish Journal of Mathematics and Computer Science;2022-06-12

4. Sparse spectral methods for partial differential equations on spherical caps;Transactions of Mathematics and Its Applications;2021-01-01

5. Fast algorithms using orthogonal polynomials;Acta Numerica;2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3