1. Asanovic, K., et al.: The landscape of parallel computing research: a view from Berkeley. EECS Department, University of California, Berkeley, Tech. rep. (2006)
2. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. (TOMS) 38(1), 1–25 (2011)
3. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. Adv. Neural. Inf. Process. Syst. 33, 22118–22133 (2020)
4. Huang, G., Dai, G., Wang, Y., Yang, H.: GE-SPMM: general-purpose sparse matrix-matrix multiplication on GPUs for graph neural networks. In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–12. IEEE (2020)
5. Im, E.J., Yelick, K., Vuduc, R.: Sparsity: optimization framework for sparse matrix kernels. Int. J. High Perform. Comput. Appl. 18(1), 135–158 (2004)