1. Liu, S., Deng, W.: Very deep convolutional neural network based image classification using small training sample size. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 730–734 (2015)
2. Xie, W., Jia, X., Shen, L., Yang, M.: Sparse deep feature learning for facial expression recognition. Pattern Recogn. (PR) 96, 106966 (2019)
3. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. (JMLR) 15, 1929–1958 (2014)
4. Wang, H., Wang, L.: Learning robust representations using recurrent neural networks for skeleton based action classification and detection. In: International Conference on Multimedia Expo Workshops (ICMEW), pp. 591–596, July 2017
5. Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using DropConnect. In: Proceedings of International Conference on Machine Learning (ICML), vol. 28, pp. 1058–1066, June 2013