1. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)
2. dos Santos, C.F.G., Passos, L.A., de Santana, M.C., Papa, J.P.: Normalizing images is good to improve computer-assisted COVID-19 diagnosis. In: Kose, U., Gupta, D., de Albuquerque, V.H.C., Khanna, A. (eds.) Data Science for COVID-19, pp. 51–62. Academic Press (2021). https://doi.org/10.1016/B978-0-12-824536-1.00033-2, https://www.sciencedirect.com/science/article/pii/B9780128245361000332
3. Gal, Y., Hron, J., Kendall, A.: Concrete dropout. In: Advances in Neural Information Processing Systems, pp. 3581–3590 (2017)
4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
5. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)