Publisher
Springer International Publishing
Reference11 articles.
1. Arunachalam, S., Kshatriya, H.H., Meena, M.: Identification of defects in fruits using digital image processing. Int. J. Comput. Sci. Eng. 6, 637–640 (2018). https://doi.org/10.26438/ijcse/v6i10.637640
2. Capizzi, G., Sciuto, G., Napoli, C., Tramontana, E., Woźniak, M.: A novel neural networks-based texture image processing algorithm for orange defects classification. Int. J. Comput. Sci. Appl. 13, 45–60 (2016)
3. Devi, P., Vijayarekha, K.: Machine vision applications to locate fruits, detect defects and remove noise: a review. Rasayan J. Chem. 7, 104–113 (2014)
4. Dubey, S.R., Jalal, A.S.: Adapted approach for fruit disease identification using images. Int. J. Comput. Vis. Image Processing (IJCVIP) 2, 44–58 (2012). https://doi.org/10.4018/ijcvip.2012070104
5. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Defective Fruit Classification using Variations of GAN for Augmentation;2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2022-12-02