Author:
Sathe Aneesh,Saxena Varun,Akshay Bharadwaj P.,Sandosh S.
Publisher
Springer Nature Switzerland
Reference21 articles.
1. Lee, S., Ko, H., Kim, J., Oh, H.: vCNN: verifiable convolutional neural network. IACR Cryptology ePrint Archive, 2020/584 (2020)
2. Feng, B., Qin, L., Zhang, Z., Ding, Y., Chu, S.: ZEN: an optimizing compiler for verifiable, zero-knowledge neural network inferences (2021)
3. Liu, T., Xie, X., Zhang, Y.: zkCNN: zero knowledge proofs for convolutional neural network predictions and accuracy. In: CCS 2021 - Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. Proceedings of the ACM Conference on Computer and Communications Security, 27th ACM Annual Conference on Computer and Communication Security, CCS 2021, Virtual, Republic of Korea, pp. 2968–2985. Association for Computing Machinery (2021). https://doi.org/10.1145/3460120.3485379
4. Wang, H., Hoang, T.: ezDPS: an efficient and zero-knowledge machine learning inference pipeline. In: Proceedings on Privacy Enhancing Technologies 2023, pp. 430–448 (2023). https://doi.org/10.56553/popets-2023-0061
5. Xing, Z., et al.: Zero-knowledge proof-based practical federated learning on blockchain (2023)