1. Alayrac, J.-B., Uesato, J., Huang, P.-S., Fawzi, A., Stanforth, R., Kohli, P.: Are labels required for improving adversarial robustness? In: NeurIPS (2019)
2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)
3. Boopathy, A., et al.: Proper network interpretability helps adversarial robustness in classification. In: ICML (2020)
4. Brendel, W., Rauber, J., Kümmerer, M., Ustyuzhaninov, I., Bethge, M.: Accurate, reliable and fast robustness evaluation. In: NeurIPS (2019)
5. Carlini, N., et al.: On evaluating adversarial robustness (2019). arXiv: 1902.06705