1. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: Knowledge graphs: a survey of techniques and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2016)
2. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: Proceedings of the 34th Proceedings of the International Conference on Machine Learning, vol. 70, pp. 3462–3471. ACM (2017)
3. Jin, W., Zhang, C., Szekely, P., Ren, X.: Recurrent event network for reasoning over temporal knowledge graphs. In: Proceedings of the 7th International Conference on Learning Representations (2019)
4. Lecture Notes in Computer Science;M Schlichtkrull,2018
5. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2018)