1. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. Discrete Mathematics and Its Applications, 2nd edn. Chapman & Hall/CRC, Boca Raton (2006)
2. Keedwell, A.D., Denes, J.: Latin Squares and Their Applications. Elsevier, Amsterdam (2015)
3. Parker, E.T.: Orthogonal Latin squares. Proc. Natl. Acad. Sci. USA 45(6), 859–862 (1959)
4. McKay, B.D., McLeod, J.C., Wanless, I.M.: The number of transversals in a Latin square. Des. Codes Cryptogr. 40, 269–284 (2006). https://doi.org/10.1007/s10623-006-0012-8
5. Vatutin, E.I., Kochemazov, S.E., Zaikin, O.S., Valyaev, S.Yu.: Enumerating the transversals for diagonal Latin squares of small order. In: CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-Based High Performance Computing: Fundamental Research and Development (BOINC: FAST 2017), vol. 1973, pp. 6–14 (2017)