Publisher
Springer Nature Switzerland
Reference32 articles.
1. audiomentations: A Python library for audio data augmentation. https://github.com/iver56/audiomentations
2. Andersen, A.H., de Haan, J.M., Tan, Z.H., Jensen, J.: Nonintrusive speech intelligibility prediction using convolutional neural networks. IEEE/ACM Trans. Audio Speech Lang. Process. 26(10), 1925–1939 (2018). https://doi.org/10.1109/TASLP.2018.2847459
3. Avila, A.R., Gamper, H., Reddy, C., Cutler, R., Tashev, I., Gehrke, J.: Non-intrusive speech quality assessment using neural networks. arXiv (2019)
4. Beerends, J., et al.: Perceptual objective listening quality assessment (polqa), the third generation itu-t standard for end-to-end speech quality measurement part i-temporal alignment. AES: J. Audio Eng. Soc. 61, 366–384 (2013)
5. Dean, D., Sridharan, S., Vogt, R., Mason, M.: The qut-noise-timit corpus for evaluation of voice activity detection algorithms. In: Hirose, K., Nakamura, S., Kaboyashi, T. (eds.) Proceedings of the 11th Annual Conference of the International Speech Communication Association, pp. 3110–3113. International Speech Communication Association, CD Rom (2010)