A Unifying Approach for Control-Flow-Based Loop Abstraction

Author:

Beyer DirkORCID,Lingsch Rosenfeld MarianORCID,Spiessl MartinORCID

Abstract

AbstractLoop abstraction is a central technique for program analysis, because loops can cause large state-space representations if they are unfolded. In many cases, simple tricks can accelerate the program analysis significantly. There are several successful techniques for loop abstraction, but they are hard-wired into different tools and therefore difficult to compare and experiment with. We present a framework that allows us to implement different loop abstractions in one common environment, where each technique can be freely switched on and off on-the-fly during the analysis. We treat loops as part of the abstract model of the program, and use counterexample-guided abstraction refinement to increase the precision of the analysis by dynamically activating particular techniques for loop abstraction. The framework is independent from the underlying abstract domain of the program analysis, and can therefore be used for several different program analyses. Furthermore, our framework offers a sound transformation of the input program to a modified, more abstract output program, which is unsafe if the input program is unsafe. This allows loop abstraction to be used by other verifiers and our improvements are not ‘locked in’ to our verifier. We implemented several existing approaches and evaluate their effects on the program analysis.

Publisher

Springer International Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Software Verification with CPAchecker 3.0: Tutorial and User Guide;Lecture Notes in Computer Science;2024-09-13

2. CEGAR-PT: A Tool for Abstraction by Program Transformation;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

3. Cooperative Verification: Towards Reliable Safety-Critical Systems (Invited Talk);Proceedings of the 8th ACM SIGPLAN International Workshop on Formal Techniques for Safety-Critical Systems;2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3