Author:
Cremerius Jonas,Weske Mathias
Publisher
Springer International Publishing
Reference16 articles.
1. van der Aalst, W.: Process Mining. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
2. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2017)
3. Berti, A., et al.: Process mining for python (PM4Py): bridging the gap between process-and data science. CoRR abs/1905.06169 (2019)
4. Bezerra, F., Wainer, J.: Anomaly detection algorithms in logs of process aware systems. In: Proceedings of the 2008 ACM Symposium on Applied Computing, SAC 2008, pp. 951–952. Association for Computing Machinery, New York (2008)
5. Conforti, R., Rosa, M.L., Hofstede, A.H.T.: Filtering out infrequent behavior from business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300–314 (2017)