What Should Be Observed for Optimal Reward in POMDPs?

Author:

Konsta Alyzia-MariaORCID,Lluch Lafuente AlbertoORCID,Matheja ChristophORCID

Abstract

AbstractPartially observable Markov Decision Processes (POMDPs) are a standard model for agents making decisions in uncertain environments. Most work on POMDPs focuses on synthesizing strategies based on the available capabilities. However, system designers can often control an agent’s observation capabilities, e.g. by placing or selecting sensors. This raises the question of how one should select an agent’s sensors cost-effectively such that it achieves the desired goals. In this paper, we study the novel optimal observability problem (oop): Given a POMDP $$\mathscr {M}$$ M , how should one change $$\mathscr {M}$$ M ’s observation capabilities within a fixed budget such that its (minimal) expected reward remains below a given threshold? We show that the problem is undecidable in general and decidable when considering positional strategies only. We present two algorithms for a decidable fragment of the oop: one based on optimal strategies of $$\mathscr {M}$$ M ’s underlying Markov decision process and one based on parameter synthesis with SMT. We report promising results for variants of typical examples from the POMDP literature.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3