1. Agarwal, O., Ge, H., Shakeri, S., Al-Rfou, R.: Knowledge graph based synthetic corpus generation for knowledge-enhanced language model pre-training. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 3554–3565. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.naacl-main.278. https://aclanthology.org/2021.naacl-main.278
2. Alivanistos, D., Santamaría, S.B., Cochez, M., Kalo, J.C., van Krieken, E., Thanapalasingam, T.: Prompting as probing: using language models for knowledge base construction. arXiv preprint arXiv:2208.11057 (2022)
3. Bertsch, A., Alon, U., Neubig, G., Gormley, M.R.: Unlimiformer: long-range transformers with unlimited length input (2023)
4. Bhartiya, A., Badola, K., et al.: Dis-rex: a multilingual dataset for distantly supervised relation extraction. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 849–863 (2022)
5. Bi, Z., et al.: Codekgc: code language model for generative knowledge graph construction. arXiv preprint arXiv:2304.09048 (2023)