1. G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335, 1294–1308 (2007)
2. N.S. Barnett, P. Cerone, S.S. Dragomir, Some new inequalities for Hermite-Hadamard divergence in information theory, in Stochastic Analysis & Applications, ed. by Y.J. Cho, J.K. Kim, Y.K. Choi. Nova Science Publishers, vol. 3 (2003), pp. 7–19, ISBN 1-59033-860-X. Preprint RGMIA Res. Rep. Coll.5(4), Art. 8 (2002).
http://rgmia.org/papers/v5n4/NIHHDIT.pdf
3. E.F. Beckenbach, Convex functions. Bull. Amer. Math. Soc. 54 , 439–460 (1948)
4. S.S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3(2), 31 (2002).
https://www.emis.de/journals/JIPAM/article183.html?sid=183
5. S.S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3(3), 35 (2002).
https://www.emis.de/journals/JIPAM/article187.html?sid=187