BSDRM: A Machine Learning Based Bug Triaging Model to Recommend Developer Team
Author:
Publisher
Springer Nature Switzerland
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-34622-4_20
Reference35 articles.
1. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proceedings of the 28th International Conference on Software Engineering, pp. 361–370 (2006)
2. Baloch, M.Z., Hussain, S., Afzal, H., Mufti, M.R., Ahmad, B.: Software developer recommendation in terms of reducing bug tossing length. In: International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage, pp. 396–407. Springer (2020)
3. Banitaan, S., Alenezi, M.: Tram: An approach for assigning bug reports using their metadata. In: 2013 Third International Conference on Communications and Information Technology (ICCIT), pp. 215–219. IEEE (2013)
4. Baysal, O., Godfrey, M.W., Cohen, R.: A bug you like: A framework for automated assignment of bugs. In: 2009 IEEE 17th International Conference on Program Comprehension, pp. 297–298. IEEE (2009)
5. Bhattacharya, P., Neamtiu, I.: Fine-grained incremental learning and multi-feature tossing graphs to improve bug triaging. In: 2010 IEEE International Conference on Software Maintenance, pp. 1–10. IEEE (2010)
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning Approaches in Contemporary Automatic Bug Triaging and Analysis of Research Gaps;2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT);2024-04-19
2. Machine Learning Techniques for Escaped Defect Analysis in Software Testing;8th Brazilian Symposium on Systematic and Automated Software Testing;2023-09-25
3. DevSched: an efficient bug-triaging model for allocating and balancing developer tasks;Iran Journal of Computer Science;2023-08-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3