LEMON: Alternative Sampling for More Faithful Explanation Through Local Surrogate Models

Author:

Collaris DennisORCID,Gajane PratikORCID,Jorritsma JoostORCID,van Wijk Jarke J.ORCID,Pechenizkiy MykolaORCID

Abstract

AbstractLocal surrogate learning is a popular and successful method for machine learning explanation. It uses synthetic transfer data to approximate a complex reference model. The sampling technique used for this transfer data has a significant impact on the provided explanation, but remains relatively unexplored in literature. In this work, we explore alternative sampling techniques in pursuit of more faithful and robust explanations, and present LEMON: a sampling technique that samples directly from the desired distribution instead of reweighting samples as done in other explanation techniques (e.g., LIME). Next, we evaluate our technique in a synthetic and UCI dataset-based experiment, and show that our sampling technique yields more faithful explanations compared to current state-of-the-art explainers.

Publisher

Springer Nature Switzerland

Reference24 articles.

1. Human–Computer Interaction Series;B Abdollahi,2018

2. Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods. In: Workshop Human Interp. Mach. Learn., pp. 66–71 (2018)

3. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Adv. Neural Inf. Proc. Sys., pp. 2654–2662 (2014)

4. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)

5. Barocas, S., Selbst, A.D.: Big data’s disparate impact. California Law Rev. 671–732 (2016)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3