Classification of Assembly Operations Using Recurrent Neural Networks

Author:

Papenberg Björn,Rückert Patrick,Tracht KirstenORCID

Abstract

AbstractVisual sensor data of manual assembly operations offers rich information that can be extracted in order to analyze and digitalize the assembly. The worker’s interaction with tools and objects, as well as the spatial–temporal nature of assembly operations, makes the recognition and classification of assembly operations a complex task. Therefore, classical methods of computer vision do not provide a sufficient solution. This paper presents a recurrent neural network for the classification of manual assembly operations using visual sensor data and addresses the question as to what extent such a solution is feasible in terms of robustness and reliability. Since complex assembly operations are a combination of basic movements, four main assembly operations of the Methods Time-Measurement base operations are classified using a machine learning approach. A dataset of these four assembly operations, reach, grasp, move and release, containing RGB-, infrared-, and depth-data is used. A Convolutional Neural Network—Long Short Term Memory architecture is investigated regarding its applicability due to the spatial–temporal nature of the data.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3