Prediction of Wafer Map Categories Using Wafer Acceptance Test Parameters in Semiconductor Manufacturing
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-08337-2_12
Reference12 articles.
1. Shim, J., Kang, S., Cho, S.: Active learning of convolutional neural network for cost-effective wafer map pattern classification. IEEE Trans. Semicond. Manuf. 33(2), 258–266 (2020). https://doi.org/10.1109/TSM.2020.2974867
2. Chen, L.L.-Y., et al.: Semi-supervised framework for wafer defect pattern recognition with enhanced labeling. In: 2021 IEEE International Test Conference (ITC), pp. 208–212 (2021).https://doi.org/10.1109/ITC50571.2021.00029
3. Chien, C.-F., Lee, P.-C., Dou, R., Chen, Y.-J., Chen, C.-C.: Modeling collinear WATs for parametric yield enhancement in semiconductor manufacturing. In: 2017 13th IEEE Conference on Automation Science and Engineering (CASE), pp. 739–743 (2017). https://doi.org/10.1109/COASE.2017.8256192
4. Chen, X., Zhao, Y., Lü, H., Shao, X., Chen, C., Huang, Y.: A machine learning-based approach for failure prediction at cell level based on wafer acceptance test parameters. In: 2021 IEEE Microelectronics Design & Test Symposium (MDTS), pp. 1–52021https://doi.org/10.1109/MDTS52103.2021.9476151
5. Jiang, D., Lin, W., Raghavan, N.: A novel framework for semiconductor manufacturing final test yield classification using machine learning techniques. IEEE Access 8, 197885–197895 (2020)
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A survey on machine and deep learning in semiconductor industry: methods, opportunities, and challenges;Cluster Computing;2023-09-04
2. Forecasting the yield of wafer by using improved genetic algorithm, high dimensional alternating feature selection and SVM with uneven distribution and high-dimensional data;Autonomous Intelligent Systems;2022-09-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3