Biomarkers for Hypoxia, HPVness, and Proliferation from Imaging Perspective

Author:

Sanduleanu Sebastian,Keek Simon,Hoezen Lars,Lambin Philippe

Abstract

AbstractRecent advances in quantitative imaging with handcrafted radiomics and unsupervised deep learning have resulted in a plethora of validated imaging biomarkers in the field of head and neck oncology. Generally speaking, these algorithms are trained for one specific task, e.g. to classify between two or multiple types of underlying tumor biology (e.g. hypoxia, HPV status), predict overall survival (OS) or progression free survival (PFS), automatically segment a region of interest e.g. an organ at risk for radiotherapy dose or the gross tumor volume (GTV). Despite relatively good performances in external validation cohorts these algorithms still have not found their way into routine clinical practice. The reason this has not happened yet is complex, multifactorial, and can be usually divided into three categories: technical (a part of the algorithm or pre-processing step is not technically sound), statistical (mainly related to selection of subset of relevant biomarkers), and translational (not enough understanding by clinicians, not easily implementable within clinical workflow). We currently foresee that the next artificial intelligence (AI)-driven technique to find its way into clinical practice beside existing techniques (e.g. automatic organ at risk segmentation) will be the automatic segmentation of head and neck gross tumor volumes.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3