1. Baulé, D., Hauck, J.C.R., Júnior, E.C.V.: Automatic code generation from sketches of mobile applications in end-user development using Deep Learning, p. 18 (2021). https://arxiv.org/abs/2103.05704
2. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953. https://www.jair.org/index.php/jair/article/view/10302
3. Chen, J., Swearngin, A., Wu, J., Barik, T., Nichols, J., Zhang, X.: Towards complete icon labeling in mobile applications. In: CHI Conference on Human Factors in Computing Systems, CHI 2022, pp. 1–14. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3491102.3502073
4. Chi, E.H., Pirolli, P., Chen, K., Pitkow, J.: Using information scent to model user information needs and actions and the web. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2001, pp. 490–497. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/365024.365325
5. Christiano, P.F., Leike, J., Brown, T.B., Martic, M., Legg, S., Amodei, D.: Deep reinforcement learning from human preferences. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 4302–4310. Curran Associates Inc., Red Hook (2017)