In-Air Handwriting Recognition Using Acoustic Impulse Signals

Author:

Niu Kai,Zhang Fusang,Fu Xiaolai,Jin Beihong

Abstract

AbstractThis paper presents AcousticPAD, a contactless and robust handwriting recognition system that extends the input and interactions beyond the touchscreen using acoustic signals, thus very useful under the impact of the COVID-19 epidemic. To achieve this, we carefully exploit acoustic pulse signals with high accuracy of time of fight (ToF) measurements. Then we employ trilateration localization method to capture the trajectory of handwriting in air. After that, we incorporate a data augmentation module to enhance the handwriting recognition performance. Finally, we customize a back propagation neural network that leverages augmented image dataset to train a model and recognize the acoustic system generated handwriting characters. We implement AcousticPAD prototype using cheap commodity acoustic sensors, and conduct extensive real environment experiments to evaluate its performance. The results validate the robustness of AcousticPAD, and show that it supports 10 digits and 26 English letters recognition at high accuracies.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3