Mechanisms in Chemistry

Author:

Hendry Robin Findlay

Abstract

AbstractMechanisms are the how of chemical reactions. Substances are individuated by their structures at the molecular scale, so a chemical reaction is just the transformation of reagent structures into product structures. Explaining a chemical reaction must therefore involve different hypotheses about how this might happen: proposing, investigating and sometimes eliminating different possible pathways from reagents to products. One distinctive aspect of mechanisms in chemistry is that they are broken down into a few basic kinds of step involving the breaking and making of bonds between atoms. This is necessary for chemical kinetics, the study of how fast reactions happen, and what affects it. It draws on G.N. Lewis’ identification of the chemical bond as involving shared electrons, which from the 1920s achieved the commensuration of chemistry and physics. The breaking or making of a bond just is the transfer of electrons, so a chemical bond on one side of an equation might be balanced on the other side by the appearance of a corresponding quantity of excess charge. A bond is understood to have been exchanged for a pair of electrons. Since reaction mechanisms rely on identities, doesn’t the establishment of a reaction mechanism explain away the chemical phenomena, showing that they are no more than the movement of charges and masses? In one sense yes: these mechanisms seem to involve a conserved-quantity conception of causation. But in another sense no: the ‘lower-level’ entities can do what they do only when embedded in higher-level organisation or structure. There need be no threat of reduction.

Publisher

Springer International Publishing

Reference53 articles.

1. Anderson, P. W. (1972). More is different. Science, 177, 393–396.

2. Atkins, P. W. (1986). Physical chemistry (Third ed.). Oxford University Press.

3. Bader, R. F. W. (1990). Atoms in molecules: A quantum theory. Oxford University Press.

4. Brock, W. H. (1992). The Fontana history of chemistry. Fontana Press.

5. Carpenter, B. (1984). Determination of organic reaction mechanisms. Wiley.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3