Topic Modeling Russian History

Author:

Oiva Mila

Abstract

AbstractTopic modeling is a highly useful method that can provide new ways to understand the past. In order to reach the full potential of the method, the researcher needs to understand the context, the specifics of the data, and how the algorithm works and know the research literature. This chapter demonstrates how topic modeling can be applied in the studies of Russian and East European history. It illustrates the choices a researcher will face and the needed steps for preparing a data set for topic modeling, and shows how the interpretation of topic modeling results works in practice. The chapter also addresses the question of the scattered nature of digitized collections of Russian history sources, and the associated challenges and opportunities in this context.

Funder

University of Helsinki

Publisher

Springer International Publishing

Reference32 articles.

1. Arnold, Taylor, and Lauren Tilton. 2015. Humanities Data in R: Exploring Networks, Geospatial Data, Images, and Text. New York: Springer.

2. Blei, David M., and John D. Lafferty. 2006. Dynamic Topic Models. Proceedings of the 23rd International Conference on Machine Learning. Pittsburg, PA. https://mimno.infosci.cornell.edu/info6150/readings/dynamic_topic_models.pdf.

3. Boumans, Jelle W., and Damian Trilling. 2016. Taking Stock of the Toolkit. Digital Journalism 4 (1): 8–23. https://doi.org/10.1080/21670811.2015.1096598.

4. Brett, Megan R. 2012. Topic Modeling: A Basic Introduction. Journal of Digital Humanities 2, 1. http://journalofdigitalhumanities.org/2-1/topic-modeling-a-basic-introduction-by-megan-r-brett/.

5. Chuang, Jason, Margaret E. Roberts, Brandon M. Steward, Rebecca Weiss, Dustin Tingley, Justin Grimmer, and Jeffrey Heer. 2015. TopicCheck: Interactive Alignment for Assessing Topic Model Stability. In Human Language Technologies, 175–184. Colorado, USA: Denver.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Historical Research: Potential and Limits of Effectiveness;V International Scientific Conference «MIP-V-2023: Modernization, Innovations, Progress»;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3