Author:
Longari Stefano,Noseda Francesco,Carminati Michele,Zanero Stefano
Publisher
Springer Nature Switzerland
Reference40 articles.
1. Al-Jarrah, O.Y., Maple, C., Dianati, M., Oxtoby, D., Mouzakitis, A.: Intrusion detection systems for intra-vehicle networks: a review. IEEE Access 7, 21266–21289 (2019). https://doi.org/10.1109/ACCESS.2019.2894183
2. Barreno, M., Nelson, B., Joseph, A.D., Tygar, J.D.: The security of machine learning. Mach. Learn. 81(2), 121–148 (2010). https://doi.org/10.1007/s10994-010-5188-5
3. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning be secure? In: Lin, F., Lee, D., Lin, B.P., Shieh, S., Jajodia, S. (eds.) Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security, ASIACCS 2006, Taipei, Taiwan, 21–24 March 2006, pp. 16–25. ACM (2006). https://doi.org/10.1145/1128817.1128824
4. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) Machine Learning and Knowledge Discovery in Databases, pp. 387–402. Springer, Berlin (2013)
5. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine learning. Pattern Recognition 84, 317–331 (2018). https://doi.org/10.1016/j.patcog.2018.07.023, https://www.sciencedirect.com/science/article/pii/S0031320318302565