1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)
2. Ahsan, M.M., Gupta, K.D., Islam, M.M., Sen, S., Rahman, M., Hossain, M.S., et al.: Study of different deep learning approach with explainable AI for screening patients with COVID-19 symptoms: using CT scan and chest X-ray image dataset (2020). arXiv preprint arXiv:2007.12525
3. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and robots: results from a systematic literature review. In: 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019 (2019)
4. Arrieta, A.B., Dı́az-Rodrı́guez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcı́a, S., Gil-López, S., Molina, D., Benjamins, R., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. fusion 58, 82–115 (2020)
5. Attaran, M., Deb, P.: Machine learning: the new ‘big thing’ for competitive advantage. Int. J. Knowl. Eng. Data Min. 5, 277–305 (2018)