Publisher
Springer Nature Switzerland
Reference28 articles.
1. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1490–1500 (2011)
2. Baeumer, B., Kurita, S., Meerschaert, M.: Inhomogeneous fractional diffusion equations. Fract. Calc. Appl. Anal. 8(4), 371–386 (2005)
3. Berger, J., Gasparin, S., Mazuroski, W., Mendes, N.: An efficient two-dimensional heat transfer model for building envelopes. Numer. Heat Transf. Part A Appl. 79(3), 163–194 (2021)
4. Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional order systems: modeling and control applications. In: Chua, L.O. (ed.) World Scientific Series on Nonlinear Science, pp. 1–178. University of California, Berkeley (2010)
5. Das, S.: Functional Fractional Calculus for System Identification and Control. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-72703-3