The MaxSAT Problem in the Real-Valued MV-Algebra

Author:

Haniková ZuzanaORCID,Manyà FelipORCID,Vidal AmandaORCID

Abstract

AbstractThis work addresses the maximum satisfiability (MaxSAT) problem for a multiset of arbitrary formulas of the language of propositional Łukasiewicz logic over the MV-algebra whose universe is the real interval [0,1]. First, we reduce the MaxSAT problem to the SAT problem over the same algebra. This solution method sets a benchmark for other approaches, allowing a classification of the MaxSAT problem in terms of metric reductions introduced by Krentel. We later define an alternative analytic method with preprocessing in terms of a Tseitin transformation of the input, followed by a reduction to a system of linear constraints, in analogy to the earlier approaches of Hähnle and Olivetti. We discuss various aspects of these approaches to solving the problem.

Publisher

Springer Nature Switzerland

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Tableau Calculus for Non-Clausal Regular MaxSAT;2024 IEEE 54th International Symposium on Multiple-Valued Logic (ISMVL);2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3