Abstract
AbstractA bilevel optimization problem consists of an upper-level and a lower-level optimization problem connected to each other hierarchically. Efficient methods exist for special cases, but in general solving these problems is difficult. Bayesian optimization methods are an interesting approach that speed up search using an acquisition function, and this paper proposes a modified Bayesian approach. It treats the upper-level problem as an expensive black-box function, and uses multiple acquisition functions in a multi-objective manner by exploring the Pareto-front. Experiments on popular bilevel benchmark problems show the advantage of the method.
Publisher
Springer Nature Switzerland
Reference55 articles.
1. Abo-Elnaga, Y., Nasr, S.: Modified evolutionary algorithm and chaotic search for bilevel programming problems. Symmetry 12 (2020). https://doi.org/10.3390/SYM12050767
2. Bard, J.F.: Coordination of a multidivisional organization through two levels of management. Omega 11(5), 457–468 (1983)
3. Bard, J.F., Falk, J.E.: An explicit solution to the multi-level programming problem. Comput. Oper. Res. 9(1), 77–100 (1982). https://doi.org/10.1016/0305-0548(82)90007-7
4. Bard, J.F., Moore, J.T.: A branch and bound algorithm for the bilevel programming problem. SIAM J. Sci. Stat. Comput. 11(2), 281–292 (1990). https://doi.org/10.1137/0911017
5. Bertinetto, L., Henriques, J.F., Torr, P., Vedaldi, A.: Meta-learning with differentiable closed-form solvers. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=HyxnZh0ct7
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献