1. Arvanitidis, G., Hauberg, S., Schölkopf, B.: Geometrically enriched latent spaces. In: The Proceedings of Machine Learning Research, vol. 130 (2020). http://arxiv.org/abs/2008.00565
2. Borghesi, A., Baldo, F., Milano, M.: Improving deep learning models via constraint-based domain knowledge: a brief survey. arXiv (2020). http://arxiv.org/abs/2005.10691
3. Chen, N., Klushyn, A., Kurle, R., Jiang, X., Bayer, J., van der Smagt, P.: Metrics for deep generative models. In: International Conference on Artificial Intelligence and Statistics, AISTATS 2018, vol. 84, pp. 1540–1550 (2018)
4. Detlefsen, N.S., Hauberg, S., Boomsma, W.: Learning meaningful representations of protein sequences. Nat. Commun. 13(1), 1914 (2022). https://doi.org/10.1038/s41467-022-29443-w
5. Dutta, U.K., Harandi, M., Sekhar, C.C.: Unsupervised deep metric learning via orthogonality based probabilistic loss. IEEE Trans. Artif. Intell. 1(1), 74–84 (2021). https://doi.org/10.1109/tai.2020.3026982