Latent Space Cartography for Geometrically Enriched Latent Spaces

Author:

O’ Mahony NiallORCID,Awasthi Anshul,Walsh Joseph,Riordan Daniel

Abstract

AbstractThere have been many developments in recent years on the exploitation of non-Euclidean geometry for the better representation of the relation between subgroups in datasets. Great progress has been made in this field of Disentangled Representation Learning, in leveraging information geometry divergence, manifold regularisation and geodesics to allow complex dynamics to be captured in the latent space of the representations produced. However, interpreting the high-dimensional latent spaces of the modern deep learning-based models involved is non-trivial. Therefore, in this paper, we investigate how techniques in Latent Space Cartography can be used to display abstract and representational 2D visualisations of manifolds.Additionally, we present a multi-task metric learning model to capture in its output representations as many metrics as is available in a multi-faceted fine-grained change detection dataset. We also implement an interactive visualisation tool that utilises cartographic techniques that allow dimensions and annotations of graphs to be representative of the underlying factors affecting individual scenarios the user can morph and transform to focus on an individual/sub-group to see how they are performing with respect to said metrics.

Publisher

Springer Nature Switzerland

Reference33 articles.

1. Arvanitidis, G., Hauberg, S., Schölkopf, B.: Geometrically enriched latent spaces. In: The Proceedings of Machine Learning Research, vol. 130 (2020). http://arxiv.org/abs/2008.00565

2. Borghesi, A., Baldo, F., Milano, M.: Improving deep learning models via constraint-based domain knowledge: a brief survey. arXiv (2020). http://arxiv.org/abs/2005.10691

3. Chen, N., Klushyn, A., Kurle, R., Jiang, X., Bayer, J., van der Smagt, P.: Metrics for deep generative models. In: International Conference on Artificial Intelligence and Statistics, AISTATS 2018, vol. 84, pp. 1540–1550 (2018)

4. Detlefsen, N.S., Hauberg, S., Boomsma, W.: Learning meaningful representations of protein sequences. Nat. Commun. 13(1), 1914 (2022). https://doi.org/10.1038/s41467-022-29443-w

5. Dutta, U.K., Harandi, M., Sekhar, C.C.: Unsupervised deep metric learning via orthogonality based probabilistic loss. IEEE Trans. Artif. Intell. 1(1), 74–84 (2021). https://doi.org/10.1109/tai.2020.3026982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3