Publisher
Springer Nature Switzerland
Reference35 articles.
1. Authors, T.T.F.: TensorFlow Federated (2018). https://github.com/tensorflow/federated
2. Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., Lane, N.D.: Flower: a friendly federated learning research framework. CoRR arxiv:2007.14390 (2020)
3. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
4. Cai, D., Wu, Y., Wang, S., Lin, F.X., Xu, M.: Fedadapter: efficient federated learning for modern nlp. In: Proceedings of the 29th Annual International Conference on Mobile Computing and Networking. ACM MobiCom 2023, Association for Computing Machinery, New York (2023). https://doi.org/10.1145/3570361.3592505
5. Che, T., et al.: Federated learning of large language models with parameter-efficient prompt tuning and adaptive optimization. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 7871–7888. Association for Computational Linguistics, Singapore (2023). https://doi.org/10.18653/v1/2023.emnlp-main.488. https://aclanthology.org/2023.emnlp-main.488